Sesquiterpene Lactones from *Elephantopus scaber*

Qiao Li LIANG*, Zhi Da MIN

Department of Natural Medicine Chemistry, China Pharmaceutical University, Nanjing 210009

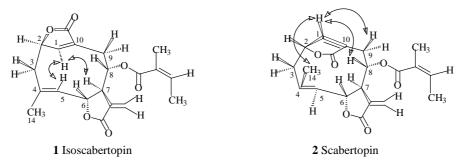
Abstract: A new germacranolide sesquiterpene lactone, isoscabertopin, was isolated from *Elephantopus scaber* together with the known scabertopin. Their structures were determined by spectroscopic methods.

Keywords: Elephantopus scaber, Compositae, germacranolide sesquiterpene lactone, isoscabertopin.

The sesquiterpene lactones were isolated from *Elephantopus scaber* Linn.¹. It has recently reported these type compounds have nerve system effect². We further investigated the plant and isolated a new germacranolide sesquiterpene lactone, isoscabertopin (1), and the known scabertopin $(2)^{1}$. This paper deals with the structural elucidation of the new compound.

Isoscabertopin (1), $C_{20}H_{22}O_6$ [HRESIMS (pos.) m/z: 359.1410 [M+H]⁺, calcd. 359.1417], colorless needles. Its IR (KBr, v) 1762, 1656 and 1646 cm⁻¹ and the characteristic pair of low-field signals at δ 6.24 (d, 1H, J=3.2 Hz, H-13a) and δ 5.61 (d,1H, J=3.2 Hz, H-13b) in ¹H NMR spectrum indicated the presence of α -methylene- γ -lactone. In addition, its IR (KBr, v) 1746 cm⁻¹ and ¹H NMR signal at δ 7.07 (s, 1H, H-1) and ¹³C NMR signals at δ 153.2 (C-1), 128.9 (C-10), 172.5 (C-15) (assigned by HMQC) showed the presence of α , β -unsaturated lactone in 1. Furthermore, the IR (KBr, v) 1711 cm⁻¹ showed an ester group in **1**. These assignment were also supported by the presence of three carbonyl carbon signals at δ 172.5, 169.5 and 166.8, respectively, in the ¹³C NMR spectrum of 1 (Table 1).

Figure 1 The structure of compound 1 and 2


Qiao Li LIANG et al.

In the ¹H NMR spectrum, a doublet signal at δ 4.78 (J = 10.4Hz) was attributed to H-5 which coupled with H-6. The signal at δ 5.17 ($J_{5,6} = 10.4$ Hz, $J_{6,7} = 8.0$ Hz) was assigned as H-6. The H-7 (δ 2.92) was shown as a complex signal (*ddd*) with large coupling constants ($J_{7,8} = 11.5$, $J_{6,7} = 7.3$, $J_{7,13} = 3.4$ Hz). This indicated *trans*-axial relationships between H-6, H-7 and H-8, *i.e.* H-6 β , H-7 α and H-8 β -oriented. These assignments were based on the assumption that H-7 is α -oriented as in all other naturally occurring germacranolides¹.

A comparison between the ¹H NMR spectrum of **1** and **2** showed that the signals of H-5 and H-7 in **1** were shifted upfield (H-5: δ 4.78 in **1** cf. 5.13 in **2**; and H-7: δ 2.92 in **1** cf. 3.13 in **2**). It is evident that the carboxyl group of the α , β -unsaturated lactone in **1** is in rather long distance from both H-5 and H-7. In agreement with this notion, the oxygen atom at C-2 should be β -oriented in **1**. This assignment was supported by NOEs experiments. In the NOESY spectrum of **1**, the correlations between H-1 and H-5, H-1 and H-7 were observed. Whereas, the correlations were observed between H-1 and H-8, H-1 and H-9a, as well as H-1 and CH₃-14 in **2** of which C-2 is α -oriented (**Figure 2**).

Thus the above data allowed the assignment of structure 1 to isoscabertopin.

Figure 2 Key NOESY correlations of compound 1 and 2

Table 1 ¹³C NMR data for **1** and **2** in CDCl₃ (δ ppm)

С	1	2	С	1	2	С	1	2	С	1	2
1	153.2	149.3	6	78.1	78.9	11	134.4	134.3	16	166.8	167.0
2	81.4	79.5	7	52.4	49.8	12	169.5	169.6	17	126.8	126.8
3	41.5	40.2	8	71.2	73.7	13	123.7	123.2	18	20.2	20.4
4	136.0	135.4	9	33.7	30.3	14	20.4	21.7	19	140.8	140.7
5	133.9	125.6	10	128.9	131.7	15	172.5	174.4	20	15.9	15.9

References

- 1. P. P. H. But, P. M. Hon, H. Cao, T. W. Dominic Chan, B. M. Wu, C. W. M. Thomas, C. T. Che, *Phytochemistry*, **1997**, *44* (1), 113.
- 2. G. Q. Li, Z. X. Zhong, World Notes on Plant Medicine, 1998, 13 (1), 10.

Received 2 July, 2001