Sesquiterpene Lactones from Elephantopus scaber

Qiao Li LIANG*, Zhi Da MIN
Department of Natural Medicine Chemistry, China Pharmaceutical University, Nanjing 210009

Abstract

A new germacranolide sesquiterpene lactone, isoscabertopin, was isolated from Elephantopus scaber together with the known scabertopin. Their structures were determined by spectroscopic methods.

Keywords: Elephantopus scaber, Compositae, germacranolide sesquiterpene lactone, isoscabertopin.

The sesquiterpene lactones were isolated from Elephantopus scaber Linn. ${ }^{1}$. It has recently reported these type compounds have nerve system effect ${ }^{2}$. We further investigated the plant and isolated a new germacranolide sesquiterpene lactone, isoscabertopin (1), and the known scabertopin (2) ${ }^{1}$. This paper deals with the structural elucidation of the new compound.

Isoscabertopin (1), $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6}$ [HRESIMS (pos.) $m / z: 359.1410[\mathrm{M}+\mathrm{H}]^{+}$, calcd. 359.1417], colorless needles. Its IR ($\mathrm{KBr}, ~ v$) 1762,1656 and $1646 \mathrm{~cm}^{-1}$ and the characteristic pair of low-field signals at $\delta 6.24(d, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{a})$ and $\delta 5.61$ $(d, 1 \mathrm{H}, \quad J=3.2 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{~b})$ in ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of α-methylene- γ-lactone. In addition, its IR (KBr, v) $1746 \mathrm{~cm}^{-1}$ and ${ }^{1} \mathrm{H}$ NMR signal at δ 7.07 ($s, 1 \mathrm{H}, \mathrm{H}-1$) and ${ }^{13} \mathrm{C}$ NMR signals at $\delta 153.2$ (C-1), 128.9 (C-10), 172.5 (C-15) (assigned by HMQC) showed the presence of α, β-unsaturated lactone in $\mathbf{1}$. Furthermore, the IR ($\mathrm{KBr}, \mathrm{v}) 1711 \mathrm{~cm}^{-1}$ showed an ester group in 1. These assignment were also supported by the presence of three carbonyl carbon signals at $\delta 172.5,169.5$ and 166.8, respectively, in the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ (Table $\mathbf{1}$).

Figure 1 The structure of compound 1 and 2

1 Isoscabertopin

2 Scabertopin

In the ${ }^{1} \mathrm{H}$ NMR spectrum, a doublet signal at $\delta 4.78(J=10.4 \mathrm{~Hz})$ was attributed to H-5 which coupled with H-6. The signal at $\delta 5.17\left(J_{5,6}=10.4 \mathrm{~Hz}, J_{6,7}=8.0 \mathrm{~Hz}\right)$ was assigned as H-6. The H-7 ($\delta 2.92$) was shown as a complex signal ($d d d$) with large coupling constants $\left(J_{7,8}=11.5, J_{6,7}=7.3, J_{7,13}=3.4 \mathrm{~Hz}\right)$. This indicated trans-axial relationships between $\mathrm{H}-6, \mathrm{H}-7$ and $\mathrm{H}-8$, i.e. $\mathrm{H}-6 \beta, \mathrm{H}-7 \alpha$ and $\mathrm{H}-8 \beta$-oriented. These assignments were based on the assumption that H-7 is α-oriented as in all other naturally occurring germacranolides ${ }^{1}$.

A comparison between the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ and 2 showed that the signals of $\mathrm{H}-5$ and $\mathrm{H}-7$ in $\mathbf{1}$ were shifted upfield (H-5: $\delta 4.78$ in $\mathbf{1} \mathrm{cf}$. 5.13 in $\mathbf{2}$; and $\mathrm{H}-7: \delta 2.92$ in $\mathbf{1} \mathbf{c f} .3 .13$ in 2). It is evident that the carboxyl group of the α, β-unsaturated lactone in $\mathbf{1}$ is in rather long distance from both H-5 and H-7. In agreement with this notion, the oxygen atom at $\mathrm{C}-2$ should be β-oriented in $\mathbf{1}$. This assignment was supported by NOEs experiments. In the NOESY spectrum of 1, the correlations between $\mathrm{H}-1$ and $\mathrm{H}-5, \mathrm{H}-1$ and $\mathrm{H}-7$ were observed. Whereas, the correlations were observed between $\mathrm{H}-1$ and $\mathrm{H}-8, \mathrm{H}-1$ and $\mathrm{H}-9$ a, as well as $\mathrm{H}-1$ and $\mathrm{CH}_{3}-14$ in 2 of which $\mathrm{C}-2$ is α-oriented (Figure 2).

Thus the above data allowed the assignment of structure $\mathbf{1}$ to isoscabertopin.
Figure 2 Key NOESY correlations of compound $\mathbf{1}$ and $\mathbf{2}$

1 Isoscabertopin

2 Scabertopin

Table $1 \quad{ }^{13} \mathrm{C}$ NMR data for $\mathbf{1}$ and $\mathbf{2}$ in $\mathrm{CDCl}_{3}(\delta \mathrm{ppm})$

C	$\mathbf{1}$	$\mathbf{2}$									
1	153.2	149.3	6	78.1	78.9	11	134.4	134.3	16	166.8	167.0
2	81.4	79.5	7	52.4	49.8	12	169.5	169.6	17	126.8	126.8
3	41.5	40.2	8	71.2	73.7	13	123.7	123.2	18	20.2	20.4
4	136.0	135.4	9	33.7	30.3	14	20.4	21.7	19	140.8	140.7
5	133.9	125.6	10	128.9	131.7	15	172.5	174.4	20	15.9	15.9

References

1. P. P. H. But, P. M. Hon, H. Cao, T. W. Dominic Chan, B. M. Wu, C. W. M. Thomas, C. T. Che, Phytochemistry,1997, 44 (1), 113.
2. G. Q. Li, Z. X. Zhong, World Notes on Plant Medicine, 1998, 13 (1), 10.

Received 2 July, 2001

